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Surface-tension-driven Bénard convection in low-Prandtl-number fluids is studied by
means of direct numerical simulation. The flow is computed in a three-dimensional
rectangular domain with periodic boundary conditions in both horizontal directions
and either a free-slip or no-slip bottom wall using a pseudospectral Fourier–Chebyshev
discretization. Deformations of the free surface are neglected. The smallest possible
domain compatible with the hexagonal flow structure at the linear stability threshold is
selected. As the Marangoni number is increased from the critical value for instability of
the quiescent state to approximately twice this value, the initially stationary hexagonal
convection pattern becomes quickly time-dependent and eventually reaches a state of
spatio-temporal chaos. No qualitative difference is observed between the zero-Prandtl-
number limit and a finite Prandtl number corresponding to liquid sodium. This
indicates that the zero-Prandtl-number limit provides a reasonable approximation for
the prediction of low-Prandtl-number convection. For a free-slip bottom wall, the flow
always remains three-dimensional. For the no-slip wall, two-dimensional solutions are
observed in some interval of Marangoni numbers. Beyond the Marangoni number
for onset of inertial convection in two-dimensional simulations, the convective flow
becomes strongly intermittent because of the interplay of the flywheel effect and
three-dimensional instabilities of the two-dimensional rolls. The velocity field in
this intermittent regime is characterized by the occurrence of very small vortices
at the free surface which form as a result of vortex stretching processes. Similar
structures were found with the free-slip bottom at slightly smaller Marangoni number.
These observations demonstrate that a high numerical resolution is necessary even at
moderate Marangoni numbers in order to properly capture the small-scale dynamics
of Marangoni convection at low Prandtl numbers.

1. Introduction
Surface-tension-driven Bénard convection, which occurs in a plane fluid layer

with an upper free surface heated from below, can serve as a prototype system for
other surface-tension-driven flows due to the conceptual simplicity of the setup. The
understanding of this type of convection (usually referred to as Bénard–Marangoni
convection and abbreviated as BMC) therefore presents one of the fundamental
problems in fluid mechanics. Although it is still less well studied than its buoyancy-
driven counterpart (Rayleigh–Bénard convection or RBC for short), it has received
considerable attention over the last few years. The majority of both experimental
and theoretical works on BMC deals with fluids with high Prandtl number from the
viewpoint of pattern formation in dissipative systems, e.g. Bestehorn 1993; Golovin,
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Nepomnyashchy & Pismen 1997; Van Hook et al. 1997; Eckert, Bestehorn & Thess
1998. Typically, such flows have small Reynolds number and are either stationary or
are only weakly time-dependent.

Marangoni convection in low-Prandtl-number fluids, i.e. liquid metals or semicon-
ductor melts, plays an important role in industrial processes such as crystal growth
(Davis 1987) or electron beam evaporation (Schiller, Heisig & Panzer 1982; Pumir &
Blumenfeld 1996). Due to the strong thermal forcing and the low kinematic viscosity
of liquid metals these flows usually have high Reynolds numbers, i.e. they are usually
time-dependent or even turbulent. In addition, liquid metals are not transparent and
are difficult to handle experimentally. For these reasons, numerical simulations are
often used for investigations of low-Prandtl-number convection. The geometries in the
numerical studies frequently resemble actual experimental or industrial setups such
as the floating zone (Kuhlmann & Rath 1993; Levenstam & Amberg 1995; Zebib,
Homsy & Meiburg 1985; Carpenter & Homsy 1990). Because of this technological
background it is perhaps not very surprising that there are only few works about
BMC at low Prandtl number. Among them are the study of Ginde, Gill & Verhoeven
(1989), which is the only experimental one to our knowledge, the theoretical studies of
Dauby et al. (1993) and of Thess & Bestehorn (1995) which predict the occurrence of
‘inverted’ hexagons at the onset of convection for sufficiently small Prandtl numbers,
and the previous direct numerical simulations of the authors (Boeck & Thess 1997,
1998) of the two-dimensional case. The present paper extends these previous numer-
ical investigations to three spatial dimensions. We have systematically studied the
flows emerging upon increasing the heating. The observed phenomena include steady
cellular convection as well as convection with regular and chaotic time-dependence.
In many respects, our approach parallels the work by Thual (1992) on RBC at low
or even zero Prandtl number. The computational domain we use is about twice the
size of the geometries studied by Thual.

The main focus of the present paper will be on the question of regularity of the
zero-Prandtl-number limit. For RBC as well as for BMC it turns out that the limit
of zero Prandtl number becomes meaningless for two-dimensional rolls when the
applied temperature gradient (measured by the dimensionless Rayleigh/Marangoni
number) exceeds a certain critical value. The so-called flywheel effect then leads to
an unbounded exponential growth of the flow amplitude with time. This effect occurs
because the nonlinear terms in the Navier–Stokes equations can be balanced by
pressure gradients for two-dimensional rolls in an integral sense, and the nonlinearity
in the energy equation disappears in the limit of zero Prandtl number (Proctor 1977;
Busse & Clever 1981). According to Thual (1992), the flywheel effect was apparently
first noted by Herring in 1970 for RBC. The authors have recently found it in
BMC (Boeck & Thess 1997). For finite Prandtl numbers the amplitude of the two-
dimensional flow remains finite, but the relevant scale of velocity and temperature
is the much larger thermal scale rather than the viscous scale (see § 4.2 for details).
The associated mode of convection is called inertial convection. It indicates that the
zero-Prandtl-number limit is singular in the way described above.

The existence of inertial convection in three-dimensional RBC still appears to be
a controversial issue. Chiffaudel, Fauve & Perrin (1987) have reported experimental
observations which support its existence, but numerical studies are either inconclusive
or contradict this view (Clever & Busse 1990; Thual 1992). For BMC, nothing is
known in the three-dimensional case since the simulations reported in Thess & Beste-
horn (1995) did not reach the Marangoni number required for inertial convection.
In the present paper we shall present numerical simulations for Marangoni numbers
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ranging from the onset of convection up to values beyond the onset of the flywheel
effect or inertial convection as observed in two dimensions. In this way, the question
of existence of inertial convection in three-dimensional BMC can be addressed for the
first time. We have also attempted to obtain a detailed overview of the flow patterns
up to the onset of chaotic convection. Two different Prandtl numbers are considered,
namely a finite Prandtl number approximately equal to that of liquid sodium and the
limit of zero Prandtl number.

The paper is organized as follows. In the following section we will briefly list the
basic equations and discuss the limit of zero Prandtl number. We continue with the
description of the numerical scheme in § 3. Results for the case of free-slip boundary
conditions at the bottom of the fluid layer will be presented in § 4. After that, the
no-slip condition is considered. Finally, we shall present our conclusions and indicate
directions for future work.

2. Basic equations
We consider a planar fluid layer of thickness d with a free upper surface, which

is heated from below. Our theoretical model involves the basic assumptions of zero
buoyancy force and a non-deflecting upper surface. Only surface tension forces drive
the convective flow. This assumption is valid when the layer is sufficiently thin or
under microgravity conditions.

The basic equations will be formulated in a Cartesian coordinate system, where
the isothermal bottom of the layer coincides with the plane z = 0. Periodic boundary
conditions apply in the x- and y-directions. The thickness d is chosen as lengthscale
for non-dimensionalization, i.e. the free surface is located at z = 1. The dimensionless
quantities Lx and Ly denote the periodicity length with respect to x and y.

The fluid in the layer is an incompressible Newtonian liquid satisfying the Navier–
Stokes equation together with the continuity and the heat equations. At the bottom
of the layer we assume either free-slip or no-slip conditions. The heat flux density at
the free surface z = 1 is modelled by Newton’s law of cooling

−λ
d

∂T

∂z
= −α (T∗ − Ts(x, y)) , (2.1)

where Ts = T (x, y, 1) denotes the surface temperature of the fluid and T∗ stands
for the (constant) ambient temperature. The remaining quantities λ and α are the
heat conductivity and the heat transfer coefficient. In the conductive state the vertical
temperature profile is linear. The temperature difference across the layer is then given
by

∆T0 = Tb − Ts =
Bi

1 + Bi
(Tb − T∗), Bi =

αd

λ
, (2.2)

with Tb as bottom temperature and the Biot number Bi as a non-dimensional
parameter. It is convenient to consider the deviation θ from the the conductive profile
defined by

T = θ + Tb − ∆T0z. (2.3)

Notice that θ(x, y, z) 6 ∆T0z since the fluid cannot become hotter than the bottom
wall, and that z is a non-dimensional quantity in the above equation, whereas the
temperatures are still dimensional. Throughout this paper, we shall exclusively deal
with the limit of zero Biot number. It corresponds to a constant heat flux density at
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the free surface. Notice that Bi(Tb − T∗) has to remain finite as Bi → 0 in order to
maintain a temperature gradient in the layer.

The force balance at the free surface requires that

ρν
∂v

∂z
= ∇σ, (2.4)

where v is the velocity, σ denotes the surface tension, ρ the fluid density and ν the
kinematic viscosity (Landau & Lifshitz 1987). The surface tension decreases linearly
with temperature as

σ = σ(Tr)− γ(T − Tr), (2.5)

where Tr stands for a reference temperature.
The equations will be given in a form based on viscous velocity scaling, i.e. we

take ν/d as velocity scale and d2/ν as time scale. Furthermore, we choose ν∆T0/κ as
the scale of θ, where κ denotes the thermal diffusivity of the fluid. The dimensionless
equations and boundary conditions in the case of zero Biot number read

∂v

∂t
+ (v · ∇)v = −∇p+ ∇2v, (2.6)

∇ · v = 0, (2.7)

P

{
∂θ

∂t
+ (v · ∇)θ

}
= ∇2θ + vz, (2.8)

∂vx

∂z
+Ma

∂θ

∂x
=
∂vy

∂z
+Ma

∂θ

∂y
= vz =

∂θ

∂z
= 0 at z = 1, (2.9)

∂vx

∂z
=
∂vy

∂z
= vz = θ = 0 at z = 0 (free-slip), (2.10)

vx = vy = vz = θ = 0 at z = 0 (no-slip), (2.11)

with the Marangoni number

Ma =
γ∆T0d

ρνκ
(2.12)

as control parameter. The other parameter P = ν/κ denotes the Prandtl number.
The scale for θ has been chosen in such a way that a coupling of velocity and
temperature is maintained also in the limit P = 0, i.e. when the left-hand side of (2.8)
vanishes. This limit will be referred to as the (viscous) zero-Prandtl-number limit.
The advantage of this limit for the numerical computations consists in the saving of
four Fourier transforms per time step, which reduces the amount of computation by
about 30% (9 vs. 13 transforms).

We also remark that the same limit has been considered in the work of Thual
(1992) for RBC. Other limiting cases based on different temperature and velocity
scalings are also discussed in that work, and it is argued that these other cases either
model transients or flows where thermal convection is merely a side effect.

Convective heat transport is measured by the non-dimensional Nusselt number Nu
defined as the ratio between the total heat flux and the conductive heat flux. In contrast
to convection between isothermal plates with fixed temperatures, convection reduces
the temperature drop across the layer. Since the contribution of heat conduction to
the total heat transport is thereby reduced, we have to compute the conductive heat
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flux for the present, reduced surface temperature. The result reads

Nu =
1

1− P 〈θs〉 , (2.13)

where

〈θs〉 =
1

LxLy

∫ Lx

0

∫ Ly

0

θ(x, y, 1) dx dy (2.14)

denotes the mean perturbation of the surface temperature.
In the zero-Prandtl-number limit Nu equals unity. We can determine Nu for P > 0

from this limit if we regard the solution of the zero-Prandtl-number equations as
the leading term in an expansion in P . The calculations are given in Boeck & Thess
(1997). We only list the final results. The mean surface temperature perturbation 〈θs〉
and Nu− 1 read

〈θs〉 = P

∫ 1

0

〈vzθ〉 dz + O(P 2), (2.15)

Nu− 1 = P 2

∫ 1

0

〈vzθ〉 dz + O(P 3), (2.16)

where vz and θ are the solutions of the zero-Prandtl-number equations. Due to its
connection with the Nusselt number the quantity vzθ (where the overbar symbol
denotes the volume average) will often be used to characterize the state of the system.
In the following we shall loosely refer to vzθ as reduced Nusselt number.

3. Numerical method
The evolution equations (2.6), (2.8) for the hydrodynamic variables are solved

using a pseudospectral numerical method based on Fourier series in the horizontal
directions x and y and a Chebyshev polynomial expansion in the vertical z-direction
(Canuto et al. 1988; Gottlieb & Orszag 1977). Because of incompressibility, only two
velocity components are independent. The velocity field can be represented in terms
of two scalar quantities Ψ and Φ using the poloidal–toroidal decomposition (Thual
1992)

v(x, y, z, t) = ∇× (∇× ezΦ(x, y, z, t)) + ∇× ezΨ (x, y, z, t). (3.1)

Equations for Φ and Ψ are derived by taking the curl and twice the curl of the mo-
mentum equation and projection onto the vertical direction. We obtain two equations
for the vertical velocity component vz = −∆hΦ and the vertical vorticity component
ωz = −∆hΨ , where ∆h = ∂2

x + ∂2
y denotes the horizontal Laplace operator. The quan-

tities vz and ωz determine the velocity field up to a mean flow U(z)ex + V (z)ey .
Equations for U and V are obtained by averaging the momentum equation over
horizontal cross-sections of the periodicity domain. The complete system of evolution
equations reads

∂tωz − ez · ∇× (v × ω) = ∇2ωz, (3.2)

∂t∇2vz + ∂z∇ · (v × ω)− ez · ∇2 (v × ω) = ∇4vz, (3.3)

P (∂tθ + (v · ∇) θ) = ∇2θ + vz, (3.4)

∂tU + ∂z 〈vxvz〉 = ∂2
zU, (3.5)

∂tV + ∂z 〈vyvz〉 = ∂2
zV , (3.6)
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where the angular brackets 〈 〉 denote horizontal averages. The boundary conditions
at the free surface are

∂2
z vz −Ma∆hθ = vz = ∂zωz = ∂zθ = ∂zU = ∂zV = 0 at z = 1, (3.7)

where ∇ · v = 0 has been used in the derivation of the first (Marangoni) boundary
condition. For the boundary conditions at the bottom we have to distinguish the
free-slip and no-slip cases. Only the conditions

vz = θ = 0 at z = 0 (3.8)

are unaffected by the particular choice. The other conditions at z = 0 read

∂2
z vz = ∂zωz = ∂zU = ∂zV = 0 (free-slip), (3.9)

∂zvz = ωz = U = V = 0 (no-slip). (3.10)

Integrating the mean flow components U and V with respect to z gives scalar
quantities

Qx =

∫ 1

0

U(z) dz, Qy =

∫ 1

0

V (z) dz, (3.11)

which represent the components of the normalized linear momentum in the x- and
y-directions up to prefactors. They can also be regarded as dimensionless mass fluxes
in x or y, which are additionally normalized to the unit square. For free-slip boundary
conditions the linear momentum is conserved, i.e. Qx and Qy remain unchanged in
the time evolution. In the simulations with free-slip boundary conditions we take
Qx = Qy = 0 without loss of generality.

In order to derive the discrete representation of (3.2)–(3.4) we put ζ = ωz , η = ∆vz ,
ξ = vz and introduce ζk, ηk, ξk and θk as the Fourier coefficients to the wave vector
k = kxex + kyey . For time differencing we use the implicit backward Euler scheme for
the linear terms and the explicit second-order Adams–Bashforth scheme for nonlinear
terms. Advancing the solution from time level n to n+ 1 then requires the solution of
four linear second-order boundary value problems for each wave vector. They read(

D2 − k2 − 1

∆t

)
ζn+1
k = − ζ

n
k

∆t
−AB {[ez · ∇× (v × ω)]k}n , (3.12)

(
D2 − k2 − 1

∆t

)
ηn+1
k = −η

n
k

∆t
+ AB

{[
∂z∇ · (v × ω)− ez · ∇2 (v × ω)

]
k

}n
, (3.13)(

D2 − k2
)
ξn+1
k − ηn+1

k = 0, (3.14)(
D2 − k2 − P

∆t

)
θn+1
k + ξn+1

k = P

(
−θ

n
k

∆t
+ AB {[v · ∇θ]k}n

)
, (3.15)

with D = d/dz and AB {f}n = (3fn − fn−1)/2 from the Adams–Bashforth formula.
For the mean flow components U and V , time differencing gives(

D2 − 1

∆t

)
Un+1 = −U

n

∆t
+ AB

{
∂

∂z
〈vxvz〉

}n
, (3.16)

(
D2 − 1

∆t

)
Vn+1 = −V

n

∆t
+ AB

{
∂

∂z
〈vyvz〉

}n
. (3.17)

The boundary conditions for the Fourier coefficients are identical to (2.9) and either
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(2.10) or (2.11) with exception of the Marangoni boundary condition, which becomes

ηk +Mak2θk = 0. (3.18)

An inspection of the system of equations and of the boundary conditions shows that
the equations for ζk and the mean flow components U,V are independent of the
other equations. They can be solved directly since suitable boundary conditions are
available. The equations for ηk, ξk and θk are coupled because of the Marangoni
boundary condition. With ηk given, we can compute ξk and θk in turn. We solve
these coupled equations by computing two linearly independent solutions of the
homogeneous system for ηk, i.e. we represent solutions as

ηk = η
(0)
k + λη

(1)
k + µη

(2)
k , (3.19)

ξk = ξ
(0)
k + λξ

(1)
k + µξ

(2)
k , (3.20)

θk = θ
(0)
k + λθ

(1)
k + µθ

(2)
k , (3.21)

where the functions with superscript (0) satisfy the inhomogeneous equations (3.13)–
(3.15) and the boundary conditions η0

k = 0 at z = 0 and z = 1. The solutions with
superscripts (1) and (2) are obtained from the solution of the homogeneous equations
((3.13)–(3.15) with zero right-hand sides) with two linearly independent boundary
conditions on ηk. We take

η
(1)
k (1) = η

(1)
k (0) = 1, (3.22)

η
(2)
k (1) = −η(2)

k (0) = 1. (3.23)

The unknown coefficients λ and µ are determined by inserting the above expressions
into the Marangoni and the no-slip/free-slip boundary condition at the bottom.

In the numerical simulations the size ∆t of the time step is fixed. The auxiliary
functions η(1,2)

k , ξ(1,2)
k and θ

(1,2)
k only have to be computed once at the start for each

wave vector k. They are stored and reused at every time step.
In the discrete Chebyshev representation each of the boundary value problems

(3.12)–(3.17) for the z-dependent Fourier coefficients at time level n + 1 reduces
to a tridiagonal system of linear algebraic equations. The boundary conditions are
incorporated by means of the τ-method, which results in two filled rows. Nonlinear
terms are computed pseudospectrally, i.e. in physical space using fast Fourier and fast
Chebyshev transforms.

The algorithm is parallelized by assigning slices of the wave vector array to the
individual processors. The array is sliced in the x-direction so that the wave vectors
assigned to an individual processor cover some x-wavenumber range and the entire
range of y-wavenumbers. By that, only the Fourier transforms require inter-process
communication. We compute them by the transpose method (Jackson, She & Orszag
1991). The program can be executed on a number of processors which is a power
of two and which is smaller than the number of collocation points with respect to
the x- and y-directions. We have chosen C as programming language and MPI as
communication library. At a resolution of 64× 64× 33 a single time step takes 0.2 s
when the program runs on 16 processors of a SGI Origin 2000 computer (13 Fourier
transforms per time step, speedup is 13.9 when compared with sequential program
execution).

Several independent tests were performed for validation of the numerical code. The
first is based on linear stability analysis of the basic conductive state. We compare the
growth rate β obtained from a numerical simulation with zero nonlinear terms with
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Figure 1. Contour plot of the surface temperature perturbation θ with free-slip boundary conditions
for P = 0, Ma = 58. Aspect ratio is Lx = Ly = 20. Dashed lines correspond to negative values of
θ, i.e. fluid descends from the surface in the centre of the hexagon. Notice the skewed shape of the
hexagons. Numerical resolution is 128× 128× 17 collocation points in x, y and z.

the exact value from linear stability analysis. By that, we verify the proper computation
of vz and θ. For free-slip boundary conditions and Ma = 70, P = 0.1, k = 1.7 the
exact result reads βex = 2.30063, whereas the simulation gives βsim = 2.30089. For
no-slip boundary conditions and Ma = 85, P = 0.5, k = 2.0 we find βex = 0.53133,
which differs only slightly from βsim = 0.53145.

We have also verified the proper computation of the vertical vorticity with nonlinear
terms turned off. The vertical vorticity was initialized with ζ = cos (π(1− z)/2) cos (x)
and the decay rate β = −(π2/4+1) of this mode was also verified with a relative error
of about 10−4 (no-slip case). All these tests were performed with Nz = 33 collocation
points and a time step ∆t = 10−4.

The proper computation of the nonlinear terms can be checked in simulations of
RBC between no-slip walls at zero Prandtl number. We can adapt our code to this
situation by including the buoyancy term and changing the boundary conditions. For
comparison we employ results for the bifurcation from straight rolls to travelling
wave convection reported by Thual (1992). Using the same numerical resolution, our
data for the measured mean square of the velocity component parallel to the roll axis
for the travelling wave case at Rayleigh numbers Ra ≈ 1900 differ by less than 1%
from the values given in table 2 of Thual’s paper.

4. Results for free-slip boundary conditions
4.1. Transition to time-dependent convection

We shall first consider the case of free-slip boundary conditions at the bottom of the
layer. Although it is somewhat less realistic than the no-slip case, it seems appropriate
to examine it in the three-dimensional setting in order to compare with previous
two-dimensional simulations by the authors. A similar approach has been taken by
Thual (1992) in numerical simulations of RBC at low Prandtl number.

Linear stability theory of the basic conductive state predicts instability above a
critical Marangoni number Mac = 57.598 with a corresponding critical wavenumber
kc = 1.7003 at zero Biot number (Boeck & Thess 1997). As in the case of a no-slip
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Figure 2. Partial bifurcation diagram for free-slip boundary conditions in the basic cell with

Lx = 4π/kc and Ly = 4π/
√

3kc. Abbreviations used for the different branches indicate zero Prandtl
number with the initial letter Z, otherwise P = 0.005. HX denotes perfect hexagons, DHX deformed
hexagons. OS identifies oscillatory solutions. The different oscillatory states distinguished by the
digits 1 or 2 are explained in the text. The numerical values for the reduced Nusselt number vzθ are
maximum values during the oscillations.

bottom we expect and observe ‘inverted’ hexagonal cells at the onset of convection
(Thess & Bestehorn 1995). Figure 1 shows the surface temperature perturbation θ
in the final state for Ma = 58 and P = 0 in a square domain of aspect ratio
Lx = Ly = 20. The simulation has been started with random initial conditions of
small amplitude. Notice that the pattern is distorted, and that the centres of the
hexagons are cold, i.e. fluid descends back into the volume after giving off heat. The
distortion can be attributed to the incompatibility of the square domain with the
symmetry of a perfect hexagonal pattern (Matthews 1998), but the hexagons have
a distinctly skewed shape in contrast to the case of high Prandtl number (Thess &
Orszag 1995). In spite of the distortion, the number of hexagons is close to what can
be expected on the basis of linear stability theory. According to the Christopherson
solution (Chandrasekhar 1961), the area occupied by a hexagonal cell is

Ac =
8π2

√
3k2

c

, (4.1)

giving LxLy/Ac = 25.3. The actual number of cells in figure 1 is 24, which demonstrates
that the proper wavelength is selected.

Since the objective of this work is the investigation of moderately or strongly
nonlinear convection, we shall now replace the large aspect ratio with a small domain
for a systematic investigation of the flows emerging upon increasing Ma. We select
the smallest possible aspect ratios Lx = 4π/kc, Ly = 4π/

√
3kc compatible with the

hexagonal planform. This domain accommodates two hexagons with the critical basic
wavenumber. In the following, we shall investigate the case of zero Prandtl number
as well as a finite Prandtl number P = 0.005. This value is approximately equal to
that of liquid sodium, the liquid metal with the lowest Prandtl number.

In our simulations we have systematically increased Ma by starting new runs with
initial velocity and temperature data from previous runs for smaller Ma. Occasionally,
we have also started with random initial conditions to check that we are not missing
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Ma Planform E vzθ Nx Ny Nz ∆t

(a) 57.5 HX 175 0.373 32 32 17 n/a
58 HX 299 0.639 32 32 17 n/a
59 HX 632 1.35 64 32 33 n/a
60 DHX 789 1.67 64 32 33 n/a
61 DHX 808 1.68 64 32 33 n/a
62 DHX 933 1.93 32 32 33 n/a
63 OS1 1560 3.19 32 32 33 4× 10−4

64 OS1 2210 4.47 32 32 33 3× 10−4

65 OS1 2810 5.63 32 32 33 3× 10−4

65 OS2 2450 4.88 32 32 33 3× 10−4

66 OS2 2910 5.72 64 32 33 3× 10−4

68 OS2 3990 7.65 64 32 33 2.5× 10−4

70 OS2 5220 9.78 64 32 33 2.5× 10−4

(b) 57.5 HX 138 0.295 64 32 17 n/a
58 HX 240 0.514 64 32 17 n/a
59 HX 493 1.06 64 32 17 n/a
60 DHX 753 1.60 64 32 17 n/a
61 DHX 768 1.61 32 32 17 n/a
62 DHX 819 1.70 32 32 17 n/a
63 OS1 1220 2.50 32 32 33 3× 10−4

64 OS1 1880 3.82 32 32 33 3× 10−4

65 OS1 2500 5.04 32 32 33 3× 10−4

66 OS1 3070 6.14 64 32 33 2× 10−4

67 OS2 2980 5.83 64 32 33 2× 10−4

68 OS1 4040 7.93 64 32 33 2× 10−4

68 OS2 3510 6.84 64 32 33 2.5× 10−4

Table 1. Numerical data from simulations with (a) P = 0 and (b) P = 0.005, and free-slip boundary
conditions at the bottom of the layer. E stands for the kinetic energy of the flow in the basic cell,
vzθ denotes the volume average of vzθ. For oscillatory solutions the numerical values are maxima
attained in the cycles. Nx, Ny and Nz denote the number of collocation points in x, y and z. The
time step ∆t is only given for time-dependent flows. HX denotes perfect hexagons, DHX deformed
hexagons. OS identifies oscillatory solutions. The different oscillatory states distinguished by the
digits 1 or 2 are explained in the main text.

new solution branches. However, we cannot rule out that some have been overlooked
in our study. During the runs, integral quantities such as the kinetic energy and
the reduced Nusselt number were monitored. For convergence towards stationary
solutions, the runs were usually terminated when both quantities were changing only
in the fourth decimal place over a typical monitoring interval of 50 time steps. In
general, the runs were continued at least up to t = 10 . . . 20. Figure 2 shows a partial
summary of our simulation results for both zero and finite Prandtl number, namely
the solution branches obtained up to onset of chaos. Tables 1(a) and 1(b) list some
data which may be useful for future comparison.

Generally, hexagons set in subcritically. According to our numerical simulations
the subcritical range extends down to Mas = 57.04 for P = 0. This is significantly
less than the threshold Mac = 57.598 for linear instability of the conductive state.
For P = 0.005 the convective state persists down to a Marangoni number Mas less
than or equal to 57.10. The size (Mac −Mas)/Mac ≈ 1% of the subcritical range is
about the same as for infinite Prandtl number (Thess & Orszag 1995). The apparent
decrease in size of the subcritical range when going from zero to finite Prandtl number
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Ma Planform E vzθ Nx Ny Nz ∆t

(a) 80 HX 77 0.201 64 32 17 n/a
82 HX 171 0.451 64 32 17 n/a
86 HX 361 0.970 64 32 17 n/a
88 DHX 431 1.12 64 16 17 n/a
90 DHX 469 1.18 64 32 17 n/a
92 DHX 470 1.15 64 32 17 n/a
95 R 490 1.19 32 n/a 17 n/a
95 TW 511 1.23 64 32 33 4× 10−4

100 R 722 1.73 64 n/a 17 n/a
100 TW 829 1.97 64 32 33 1.5× 10−4

105 TW 1180 2.78 64 32 33 2× 10−4

106 R 1080 2.56 64 n/a 33 n/a
110 TR 2850 6.30 64 n/a 33 1× 10−4

115 TR 11260 19.6 64 n/a 33 1× 10−4

120 OTW 14740 25.2 128 32 33 1× 10−4

125 OTW 14910 26.0 128 64 33 7× 10−5

(b) 80 HX 68 0.177 64 32 17 n/a
82 HX 154 0.407 64 32 17 n/a
86 HX 328 0.879 64 32 17 n/a
88 DHX 398 1.03 64 32 17 n/a
90 DHX 440 1.11 64 32 17 n/a
92 DHX 455 1.11 64 32 17 n/a
95 R 467 1.13 32 n/a 17 n/a
95 TW 480 1.16 64 16 17 5× 10−4

100 TW 779 1.85 64 16 17 5× 10−4

102 R 784 1.87 32 n/a 17 n/a
105 TW 1110 2.60 64 16 17 5× 10−4

110 TR 2050 4.71 64 n/a 33 2× 10−4

115 TR 7500 13.8 64 n/a 33 1× 10−4

120 OTW 14960 25.1 128 32 33 8× 10−5

122 OTW 15080 25.4 128 32 33 7× 10−5

Table 2. Numerical data from simulations with (a) P = 0 and (b) P = 0.005, and no-slip boundary
conditions at the bottom of the layer. E stands for the kinetic energy of the flow in the basic cell,
vzθ denotes the volume average of vzθ. Nx, Ny and Nz denote the number of collocation points in
x, y and z. The time step ∆t is only given for time-dependent flows. HX denotes perfect hexagons,
DHX deformed hexagons, TW identifies travelling waves and R identifies steady rolls. Travelling
rolls are abbreviated as TR and oblique travelling waves as OTW.

may be related to the fact that the nonlinear term in the heat equation contributes
to nonlinear saturation. The corresponding reduction in flow amplitude would lead
to a breakdown of convection at a higher Ma if the minimum amplitude needed for
sustaining convection remained approximately constant.

Figure 3(a–d) illustrates the first, symmetry-breaking bifurcation of the hexagonal
pattern, which occurs around Ma ≈ 59.5. The new stationary cell pattern will be
referred to as deformed hexagons. It does not retain the hexagonal symmetry but
has reflection symmetries with respect to both x- and y-directions (after suitably
translating the pattern in x and y). This can be seen in the striking change of the
surface vorticity plots of figure 3(b, d). Moreover, the amplitude of the vertical vorticity
is larger by two orders of magnitude in figure 3(d) than in figure 3(b).

The qualitative difference between the two patterns can also be described in
Fourier space. For the surface temperature distribution of figure 3(a) the wave
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Figure 3. Free-slip boundary conditions with P = 0 in the basic cell: (a, c) surface temperature
perturbation θ and (b, d) surface vorticity for Ma = 59 (a, b) and for Ma = 60 (c, d). Wave vectors of
length

√
13kc contributing to the pattern (b) can be constructed from the basic triplet (bold arrows)

as shown in (e).

vectors contributing to the pattern (‘excited’ wave vectors) are essentially only those
of the basic triplet. This is no longer the case in figure 3(c), where additional wave
vectors outside the basic triplet also have a significant amplitude, although the triplet
is still dominant. In the surface vorticity plot of figure 3(b), six wave vectors of length√

13kc are excited. The amplitudes associated with each of these vectors are equal
in modulus. We remark that these vectors are integer linear combinations of vectors
taken from the basic triplet. Figure 3(e) shows how these vectors are constructed. By
contrast, in the surface vorticity distribution of figure 3(d) there are wave vectors of
length kc excited, which constitutes an essential feature of this bifurcation.

We further note that the convective heat transport characterized by the reduced
Nusselt number vzθ remains almost constant for the deformed hexagons. The same
applies for other integral quantities such as the kinetic energy. We also remark that
the perfect hexagons (and thus the bifurcation to deformed hexagons) will be absent
when the aspect ratio does not admit them as in figure 1.

Time-dependent convection sets in via an oscillatory instability. Figure 4(a–c)
illustrates the dynamics for the case Ma = 63, P = 0, while figure 4(d) shows the
corresponding evolution of the heat transport over one oscillation period. The low
energy state of figure 4(a) corresponds to a pattern where the cells have shrunk to a
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Figure 4. Free-slip boundary conditions with P = 0 and Ma = 63 in the basic cell. (a–c) Snapshots
of the surface temperature perturbation θ. (d) Evolution of the reduced Nusselt number vzθ during
a single oscillation period.

minimal size, which allows the formation of a roll-like structure. As time progresses,
the cells expand, and the roll converts into individual cells. After reaching a peak in
the energy (as well as in the Nusselt number), the cells shrink and the roll reappears.
The effective rise in the heat transport for the oscillating branches ZOS1 (P = 0)
and OS1 (P = 0.005) is somewhat exaggerated in figure 2 since we have plotted the
peak values attained during the oscillation and not the temporal average. For an
explanation of the abbreviations see the caption of figure 2.

The next instability is associated with excitations of the mean flow component
V , which is still zero in the simple oscillatory regime just described. The new state
with non-zero V occurs after a period-doubling bifurcation. A lateral oscillation
with respect to the short dimension of the cell with half the frequency of the
contraction/expansion now overlays the basic oscillation. The corresponding branches
denoted by ZOS2 and OS2 in figure 2 overlap with ZOS1 and OS1. At somewhat
higher Ma, the zero mode oscillations then undergo a period doubling themselves,
which leads to a lateral drift of the pattern as a whole. For P = 0 this happens
at a Marangoni number in the interval 66 < Ma < 67. The drift motion occurs in
the y-direction, i.e. parallel to the shorter side of the cell. It becomes apparent as a
splitting of a periodic orbit in the phase plot of the toroidal kinetic energy Et vs.
the total kinetic energy E in figure 5(a). The toroidal kinetic energy is defined as the
energy associated with the toroidal part ∇ × ezΨ of the velocity field including the
mean flow components U and V , i.e.

Et =
1

2

∫ Lx

0

∫ Ly

0

∫ 1

0

|∇× ezΨ +Uex + V ey|2 dx dy dz. (4.2)

Figure 5(b) shows another period doubling at Ma = 70.5 for P = 0. The qualitative
behaviour is the same for P = 0.005, but the motion shown in figure 5(b) has
already occurred at Ma = 68. Based on these observations one could speculate
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Figure 5. Free-slip boundary conditions with P = 0 in the basic cell. Phase plot of the toroidal
part Et of the kinetic energy vs. the total kinetic energy E for (a) Ma = 70, (b) Ma = 70.5.

about a period-doubling cascade leading to temporal chaos. However, we have not
attempted to search for orbits with even longer periods since the long integration
times (trun > 100) make these simulations very expensive.

4.2. Regularity of the zero-Prandtl-number limit

In two-dimensional simulations with free-slip boundary conditions it turns out that
the case P = 0 leads to a singular behaviour of the system above a certain inertial
Marangoni number Mai, which is Mai ≈ 73 for a periodicity length Lx = 2π/kc
(Boeck & Thess 1997). For Ma > Mai the system no longer evolves into a steady
state. Instead, the flow amplitude grows exponentially without bound. Unbounded
growth cannot occur when the Prandtl number is finite. The reason for this is that for
P = 0 the temperature perturbation does not perturb the linear conductive profile.
For P > 0 this is no longer the case, and the temperature perturbation is now a
bounded quantity because of the finite applied temperature gradient and the fact
that no heat is generated inside the fluid. However, in order for this effect to provide
a mechanism of saturation, the velocity must be of the order of the thermal scale
κ/d which indicates the singular nature of the limit P → 0. The associated mode of
convection is called inertial or flywheel convection.

Inertial convection is clearly an admissible state of the system when Ma > Mai
and P > 0. Nevertheless it will be irrelevant for the actual behaviour in three
dimensions at low P if finite energy solutions prevail for P = 0 and Ma > Mai,
i.e. if the limit P → 0 is regular in three dimensions. Simulations with P = 0
performed for Ma = 80 in the geometry accommodating two hexagons did not exhibit
unbounded growth or any tendency towards a two-dimensional state. However, these
observations do not rule out that the inertial mode may still be reached by the
dynamics. To exclude this possibility we need to show that the exponentially growing
roll solutions are unstable with respect to three-dimensional perturbations. We have
therefore performed simulations in a square domain of aspect ratio Lx = Ly = 2π/kc
for P = 0. The initial condition consisted of a pair of stationary rolls parallel to
the y-direction with P = 0.1, Ma = 80 as considered in Boeck & Thess (1997).
Setting P = 0 gives an exponentially growing solution in two dimensions. For the
three-dimensional simulations we have added a small random perturbation to ωz .
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Figure 6. Stability of the exponentially growing two-dimensional roll solution for free-slip con-
ditions. Parameters are Lx = Ly = 2π/kc, Ma = 80, P = 0. The exponential growth of the flow
amplitude (measured by the mean-square velocity) eventually breaks down when three-dimensional
perturbations are present. The breakdown occurs earlier when the amplitude of the random pertur-
bation added to ωz is larger (1st case).

The mean square velocity as a function of time is plotted in figure 6. The curves for
the purely two-dimensional and the two three-dimensional cases are indistinguishable
up to a point where the two-dimensional rolls break down into a three-dimensional
pattern. The two three-dimensional cases are characterized by a different magnitude
of the random perturbation to ωz , which is larger for the second case. On the basis
of these results we can conjecture that the exponentially growing roll solutions will
be unstable in three dimensions and that inertial convection therefore does not occur
unless the system is kept in a two-dimensional state through additional measures.

The degree of two-dimensionalization of the flow at the free surface was monitored
by means of a scalar diagnostic quantity W . The definition of W is inspired by
experimental work (Gollub & McCarriar 1982) on the wavenumber distributions of
convective patterns. It rests on the two-dimensional power spectrum of the surface
temperature perturbation θs. Because θs is a real function, the power spectrum |θs(k)|2
is symmetric with respect to k → −k, i.e. we can restrict our consideration to the
half-plane kx < 0, say. If the flow is two-dimensional, then the power spectrum |θs(k)|2
collapses to a line in this half-plane through the origin. W should characterize the
deviation from this linear distribution. We shall measure the deviation relative to the
centre of mass km, which is defined by

km =

∫
kx<0

|θs(k)|2k dkx dky∫
kx<0

|θs(k)|2 dkx dky

. (4.3)

We denote by lm(k) the minimum distance between the point k and the line passing
through the origin and the centre of mass km as plotted in figure 7. The diagnostic
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Figure 7. Schematic diagram of the Fourier space distance l used in
defining the diagnostic quantity W .
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Figure 8. Free-slip boundary conditions with P = 0, Ma = 120 in the basic cell. (a) Time series of
W demonstrates the persistent three-dimensionality of the flow. (b) Chaotic time dependence of the
reduced Nusselt number vzθ. Numerical resolution is 128× 64× 33 collocation points for this run.

quantity W can now be defined as

W =

∫
kx<0

|θs(k)|2lm(k) dkx dky∫
kx<0

|θs(k)|2 dkx dky

. (4.4)

W is clearly non-negative and becomes zero only for purely two-dimensional rolls.
Large values of W can be attained when large excited wave vectors of different
orientations exist, i.e. for three-dimensional surface temperature distributions with
pronounced small-scale structures.

In conclusion of the free-slip case we shall now return to the periodic domain
with Lx = 4π/kc, Ly = 4π/

√
3kc considered before. We have performed additional

simulations for Marangoni numbers up to Ma = 120. Figure 8(a) shows the temporal
evolution of W at Ma = 120 and P = 0. Values of order unity for W demonstrate the
persistent three-dimensional character of this flow and indicate the absence of small-
scale structures in the surface temperature distribution. The chaotic time evolution
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Figure 9. Contour plot of θ at the free surface with no-slip conditions for P = 0, Ma = 80. Aspect
ratio is Lx = Ly = 20. Dashed lines correspond to negative values of θ. Notice the skewed shape of
the hexagons. Numerical resolution is 128× 128× 17 collocation points in x, y and z.

of the heat flux is shown in figure 8(b). The same qualitative behaviour was also
observed in the case with P = 0 and Ma = 100.

5. Results for no-slip boundary conditions
5.1. Transition to time-dependent convection

The linear stability threshold in the no-slip case is given by the classical result of
Pearson (1958). For our case (Bi = 0) it is kc = 1.9929 and Mac = 79.607. We have
again performed a single simulation with large aspect ratio Lx = Ly = 20 in order to
verify the selection of the proper wavenumber near the instability threshold by our
numerical code. Figure 9 is a plot of the surface temperature perturbation in the final
state after starting from random initial conditions of small amplitude. Notice again
the incompatibility of the square domain with the symmetry of the hexagonal pattern
causing distortion. The simple estimate LxLy/Ac = 34.8 from equation (4.1) for the
number of cells is in good agreement with the actual number of 34.

As in the previous section, we shall now study the flow in the smallest possible
rectangular domain compatible with hexagonal cells. This domain has Lx = 4π/kc,

Ly = 4π/
√

3kc. It accommodates two hexagons with the critical basic wavenumber.
As before, we shall investigate the case of zero Prandtl number as well as a finite
Prandtl number P = 0.005. Figure 10(a) shows a partial summary of our simulation
results for both zero and finite Prandtl number, and tables 2(a) and 2(b) give the
corresponding data.

The subcritical range of the perfect hexagons extends down to Mas = 79.05 for
P = 0. For P = 0.005 the convective state persists down to a Marangoni number
Mas less than or equal to 79.10. The size (Mac−Mas)/Mac ≈ 0.8% of the subcritical
range is slightly smaller than for the free-slip bottom. Perfectly hexagonal cells are
stable up to Ma ≈ 86, i.e. they occur over a significantly wider range of Marangoni
numbers than for a free-slip bottom. This may be due to the slower increase of the
flow amplitude with Ma than in the free-slip case (cf. tables) caused by the additional
friction at the bottom. The insets in figure 10(a) show the surface temperature
distribution of deformed hexagons replacing the hexagons beyond Ma ≈ 86. As for
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Figure 10. Bifurcation diagrams for no-slip boundary conditions in the basic cell with Lx = 4π/kc
and Ly = 4π/

√
3kc. (a) Solution branches near the onset of convection. Abbreviations indicate

zero Prandtl number with the initial letter Z, otherwise P = 0.005. HX denotes perfect hexagons,
DHX deformed hexagons. TW identifies travelling waves and R identifies steady rolls. The insets
show surface plots of the temperature perturbation θ for the deformed hexagons, the travelling
waves and two differently orientated roll states. The travelling wave moves to the left. (b) Reduced
Nusselt number for travelling rolls (TR) and oblique travelling waves (OTW). The insets show
surface temperature plots for the travelling rolls (moving to the left) and the oblique travelling
waves (moving to the left and downwards).

free-slip boundary conditions, there is very little change in the integral quantities for
this particular solution branch.

The next bifurcation occurs near Ma = 93, where the deformed hexagons cease to
exist. We have found several solution branches to exist beyond this point. Three of
them correspond to stationary two-dimensional rolls either with the roll axes parallel
to the short domain boundary or in two different oblique orientations, one of which
is shown in the insets in the lower right corner of figure 10(a). The other oblique
solution is obtained upon reflection with respect to x or y. Notice that there is no
difference between the different orientations: the solutions are physically identical.
The other two degenerate branches represent time-dependent solutions, namely three-
dimensional travelling waves differing only in the direction in which they propagate.
These solutions break the spatial reflection symmetry with respect to y. The upper
right inset shows such a travelling wave propagating to the left. We have not attempted
to resolve the bifurcation scenario in detail since the solutions converge very slowly
near Ma ≈ 93 with integration times of the order of trun = 100 or even larger.

The three-dimensional travelling wave solutions are associated with a non-zero
mean flow Qy . For both Prandtl numbers, this mean flow appears to rise from zero
for the smallest Ma to a value of approximately Qy = 0.25 for the largest Ma on this
solution branch. Figure 10(a) also shows that the travelling wave branches exist up
to higher Ma than the rolls. Heat transport is slightly more effective for the travelling
waves than for straight rolls. Concerning the effect of a finite Prandtl number we
note that flow amplitude decreases from P = 0 to P = 0.005. In comparison with
the free-slip case, it is significantly smaller at the same distance from the threshold of
convection.

The three-dimensional travelling wave solutions become unstable with respect to
purely two-dimensional travelling wave solutions, namely rolls which travel sideways.
The roll axes of these solutions are again parallel to the short domain boundary, but in
contrast to the three-dimensional travelling waves, the mean flow Qx is now non-zero,
which corresponds to a broken reflection symmetry with respect to x. Previous, purely
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Figure 11. (a) Dependence of the mass flux Qy on Ma for the oblique travelling waves in the basic
cell for P = 0 (ZOTW) and P = 0.005 (OTW). (b) Temporal evolution of the reduced Nusselt
number for Ma = 118, P = 0.

two-dimensional simulations for P = 0 performed in conjunction with Boeck & Thess
(1997) demonstrate that the laterally travelling rolls bifurcate from the stationary rolls
with Qx = 0. These observations were made for a cell with Lx = 2π/kc.

In our present three-dimensional simulations the travelling roll solution sets in
only at a somewhat higher Marangoni number than in two dimensions, since the
two-dimensional travelling rolls appear to be unstable with respect to the three-
dimensional travelling wave solutions for small values of Qx. This behaviour was
observed for Ma = 108 with P = 0 and for Ma = 106 for P = 0.005 for rolls parallel
to the y-direction. In view of the already considerable complexity of the problem we
refrain from tracing the oblique roll solutions any further.

5.2. Inertial bursts: remnants of flywheel convection

As for the case of free-slip boundary conditions we shall now describe our findings
concerning the regularity of the zero-Prandtl-number limit. We shall again see that
inertial convection is not realized, but in contrast to the free-slip condition the flywheel
effect represents a noticeable feature of the dynamics.

The two-dimensional travelling roll branches identified by ZTR and TR in fig-
ure 10(b) exhibit a sharp rise in the flow amplitude over a small range of Marangoni
numbers. In two-dimensional simulations with P = 0 this strong increase precedes
the onset of the flywheel effect, which causes the unbounded growth of the flow
amplitude. As for the free-slip boundary condition at the bottom, the regularity of the
zero-Prandtl-number limit rests on the prevalence of finite energy solutions beyond
the inertial Marangoni number.

In contrast to the free-slip case, the problem of stability of the exponentially grow-
ing, two-dimensional solutions arises naturally here since we use the two-dimensional
solutions realized just below Mai ≈ 116 as initial conditions for runs with Ma > Mai.
Figure 10(b) shows the result of the corresponding numerical experiments. It turns
out that the travelling rolls (which exhibit unbounded growth in two dimensions)
saturate in a three-dimensional state, in which the basic travelling roll state is still
present. These new solutions can be regarded as oblique travelling waves. They are
characterized by intense spots of vertical vorticity ωz along the narrow strips of the
free surface where fluid descends into the bulk of the layer. These spots move along
the roll axes, giving rise to a mean flow Qy in addition to Qx. The strength of Qy
is plotted in figure 11(a) for the two cases P = 0 and P = 0.005. It is rather weak
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Figure 12 (a–c). For caption see facing page.

compared with Qx ≈ 14. In contrast to the rise of Qy with Ma, Qx drops slightly

as Ma increases. Notice that vzθ remains almost constant for the oblique travelling
waves. This is also true for other integral quantities. Convergence towards the final
state is very slow for these solutions, which is illustrated by figure 11(b). Because of
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Figure 12. Intermittent dynamics for no-slip boundary conditions with P = 0, Ma = 140 in the
basic cell. (a) Temporal evolution of the reduced Nusselt number (bottom) and the inverse diagnostic

quantity W (top). (b) Temporal evolution of vzθ (bottom) and the mass flux Q =
√
Q2
x + Q2

y (top).
Insets show two surface temperature snapshots taken at the times indicated by the vertical dashed
lines, which are identical to those in (a). (c) Scatter plot from the time series of Qx and Qy .
(d) Surface vorticity snapshot taken at the time corresponding to the right dashed line in (b).
(e) Vertically integrated energy dissipation rate for the same state of the system as in (d). Notice
the coincidence of locations of high vertical vorticity and high energy dissipation. Contour levels
are equidistant in both (d) and (e).

the exceedingly long integration times, we did not wait for a fully converged solution.
The integration was usually stopped at t ≈ 20. The data given in figures 10(b) and
11(a) were then obtained by averaging over the last oscillation period.

We have found oblique travelling waves up to Ma = 125 for P = 0 and Ma = 122
for P = 0.005. They are replaced by solutions with chaotic time-dependence but with
a similar spatial structure. Long transients, also known from RBC at low Prandtl
number (Thual 1992), make detailed studies of the transition to chaos very expensive
in terms of CPU time. The simulation shown in figure 11(b) is fairly typical. At a
resolution of 128 × 32 × 33 collocation points in the x-, y- and z-directions and a
time step of ∆t = 8 × 10−5 it required 100 hours user time on four processors of an
SGI Origin.

Figure 12(a) shows the temporal evolution of the reduced Nusselt number vzθ for
the case Ma = 140, P = 0 as well as that of W−1. The strongly intermittent character
with short, intense bursts is also typical for the finite value P = 0.005 at the same
Ma. It is apparent from the plots that the bursts coincide with a roll-like flow pattern,
i.e. small W . Since two-dimensionalization activates the flywheel effect, the bursts
are characterized by exponential growth of the flow amplitude. Breakdown of the
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growing solutions is accompanied by a return to a distinctly three-dimensional state.
The cause of the breakdown lies in three-dimensional perturbations present in the
initial condition at the beginning of the burst. Because of the role of the flywheel
effect (leading to inertial convection in two dimensions) during these events we shall
refer to them as inertial bursts. We remark that solutions with low W and high heat
flux need not necessarily break down immediately but can exist also for longer times
as exemplified by the behaviour near t = 13. However, judging from our numerical
experiments for other Marangoni numbers such behaviour seems to be more of an
exception rather than being typical.

The time series of figure 12(b) indicate that the mean flow Q =
√
Q2
x + Q2

y also grows
during the inertial bursts. This agrees with our previous remarks that the flywheel
mode is accompanied by a mean flow in the case with no-slip boundary conditions.
The insets show surface temperature plots during a burst and after a burst. The
oblique orientation of the rolls is actually preferred for the burst events, as can be
seen in the scatter plot of figure 12(c). If we decompose the motion of the roll axis
of these travelling rolls with oblique orientation with respect to the x- and y-axes
(e.g. via observing the surface temperature distribution), we find that Qy = ±√3Qx
because of the 60◦ angle between the roll axis and the y-axis. In figure 12(c) the
points with high Q all lie close to the lines Qy = ±√3Qx and not to the Qx-axis as for
rolls parallel to y. As an explanation for this observation we can offer the following
argument. If the rolls were parallel to y, then we would actually have two pairs of
rolls in our domain. By contrast, this is not the case for the oblique orientation, where
only one pair of rolls is actually present. This may account for the preference for the
oblique orientation if we assume that the flow settles more easily into the travelling
roll state when no synchronization with a second pair of rolls is required.

The resolution of 128× 64× 33 collocation points used for the present simulation
at Ma = 140 may seem rather high when looking at the smooth surface temperature
plots in figure 12(b), but the surface vorticity distribution of figure 12(d) shows that
it is a necessity. The snapshot was taken at the same time as the surface temperature
plot shown in the right inset of figure 12(b). High values of the vertical vorticity occur
at the locations with the lowest surface temperature where cold fluid descends into
the bulk. These regions also coincide with the highest energy dissipation as can be
seen from the vertically averaged energy dissipation rate shown in figure 12(e). We
have checked that this is a robust property by repeatedly taking snapshots during the
simulation. Moreover, vertical cuts of the vorticity field show that the modulus of ω
is largest at the free surface. The emergence of small structures in the surface vorticity
distribution even at moderately supercritical Marangoni numbers suggests that the
resolution requirements will be very severe for high-Marangoni-number convection
at low Prandtl number. It also highlights the crucial role of the free surface for the
flow dynamics. We remark that similar small-scale structures were observed in the
simulation with free-slip boundary conditions at Ma = 120 and P = 0, although this
flow was not so strongly intermittent.

In view of this important role of the surface vorticity the numerical resolution
was adjusted in such a way that the free-surface vorticity was sufficiently resolved in
all of the strongly nonlinear simulations reported here, i.e. it was chosen such that
oscillations on the scale of the grid spacing are either absent or of small amplitude
(few percent of peak value). Occasional tests with smaller resolution (half the Fourier
modes in either one or both horizontal directions) usually yielded deviations in the
reduced Nusselt number or the kinetic energy of the order of 1% or less for flows
with stationary values of these integral quantities.
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6. Discussion and conclusions

We can briefly summarize the numerical simulations reported in the two preceding
sections as follows. We have demonstrated that BMC at zero Prandtl number P
quickly becomes time-dependent. The same holds true for the finite value P = 0.005
approximately equal to that of liquid sodium. In the case of free-slip boundary
conditions at the bottom of the layer, the flow is already chaotic when the Marangoni
number is about 30% larger than the linear stability threshold for convection. With
no-slip conditions, chaotic convection occurs when the Marangoni number is about
60% larger than the threshold. The discrepancy between these two figures may be
attributed to the stabilizing effect of bottom friction in the no-slip case. Moreover, the
limit of zero Prandtl number is regular, i.e. inertial convection is suppressed in three
dimensions. The two-dimensional rolls required for inertial convection are unstable
with respect to three-dimensional perturbations when their amplitude is sufficiently
large.

All of these results were obtained in a periodic box with aspect ratio Lx = 4π/kc,

Ly = 4π/
√

3kc. A generalization to larger aspect ratios is of course desirable but
hardly feasible on the basis of the present investigations alone. A statement which
can probably be made safely is that instabilities will benefit from the presence of more
degrees of freedom in larger aspect ratio domains, i.e. more complicated flow patterns
may emerge even earlier upon increasing Ma in such domains. We feel that knowledge
of the behaviour of the small aspect ratio system should prove useful in investigating
these more complicated cases. The considerable numerical effort needed to simulate
low-Prandtl-number BMC at only moderately supercritical Ma also favours the use
of of a small aspect ratio.

Concerning possible generic properties of our observations (i.e. those unrelated
to the constraints imposed by the finite geometry) we note that the transition from
hexagonal patterns to stationary rolls for no-slip boundary conditions has been
observed by Thess & Bestehorn (1995) at P ≈ 0.2 for larger aspect ratios also.
The canonical approach to determine such generic properties would require analyses
similar to those by Busse and co-workers for RBC (e.g. Clever & Busse 1974)
rather than direct numerical simulations as done by the present authors. For these
analyses one would have to determine the linear stability e.g. of the infinitely extended
hexagonal pattern with respect to perturbations of suitable symmetry as function of
the Marangoni number, the basic wavelength and other parameters. To the knowledge
of the authors this has so far not been attempted in BMC.

The question of how RBC and BMC compare for low Prandtl number can be
addressed in a more substantial way. A major difference between RBC and BMC
consists in the different planform at the onset of convection, namely rolls for RBC and
hexagons for BMC. Consequently, one cannot expect similar behaviour concerning
the route to chaos. In addition, direct comparison with Thual’s (1992) results is
difficult because the cells considered there were typically at least 50% smaller. If we
had chosen these smaller aspect ratios, the perfect hexagonal pattern would not have
occurred at all. However, our observations share some similarities with his findings
concerning the differences between free-slip and no-slip boundary conditions at the
bottom. A typical difference appears to be the generation of oscillatory states in
the free-slip case, whereas travelling waves appear for no-slip conditions. This may
be related to the additional constraints of the conserved linear momentum for the
free-slip bottom.

Another similarity consists in the strong intermittency of the flow for zero Prandtl



274 T. Boeck and A. Thess

number with a no-slip bottom when the applied temperature gradient exceeds the
threshold for inertial convection. For both RBC and BMC the flow apparently has the
tendency to evolve into a nearly two-dimensional state which activates the flywheel
effect and causes exponential growth, cf. § 5.3 in Thual (1992). The breakdown of this
growing solution is caused by the generation of vertical vorticity. We remark that the
evolution towards the two-dimensional roll pattern in our BMC simulations generates
a significant mean flow. The simplest way of assessing its role could be to set the two
mean flow components U and V equal to zero in future simulations.

Strongly intermittent behaviour at zero Prandtl number is also reported in RBC for
free-slip conditions immediately above the threshold of convection. In a small square
cell which admits a single pair of rolls Thual (1992) observes relaxation oscillations
where the rolls change their orientation periodically in the cell. The change is mediated
by the generation of vertical vorticity, which apparently requires a considerable flow
amplitude. Curiously, Thual does not refer to the flywheel effect in connection with
this observation, although the threshold for inertial convection coincides with the
linear stability threshold for RBC between free-slip plates. In our simulations of
BMC, the larger aspect ratio does not favour a two-dimensional organization so
strongly, and the flow remains in a three-dimensional state, which suppresses the
strong intermittency caused by the flywheel effect.

An interesting open problem concerns the stability of the exponentially growing
roll solutions. It would be interesting to determine which perturbations eventually
give rise to the breakdown of the two-dimensional state. Since the underlying basic
state is time-dependent this poses a problem which cannot simply be addressed in the
framework of standard hydrodynamic stability, i.e. straightforward linearization or
Floquet theory. Future investigations should also look into the effects of a magnetic
field, which should be able to stabilize two-dimensional rolls when it is oriented
parallel to the roll axis. For RBC, there are works dealing with such questions
(Meneguzzi et al. 1987; Sulem, Sulem & Thual 1985).

Although experimental work on BMC in liquid metals requires considerable effort,
we hope that the present results can convince experimentalists that this problem is
worth studying. Current efforts of the authors are directed towards further increases in
the Marangoni number in order to obtain a numerical realization of turbulent BMC.
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of Dresden and Ilmenau. T. B. is supported by the Deutsche Forschungsgemeinschaft
under grants Th497/9-2 and Th497/9-3.
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